Module Title: Neural Function I: From Experiments to Analysis

<table>
<thead>
<tr>
<th>Identification-Nr.</th>
<th>Workload</th>
<th>Credit Points</th>
<th>Frequency of Occurrence</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MN-N-Neuro M03</td>
<td>360h</td>
<td>12CP</td>
<td>Summer term, 1st half</td>
<td>7 weeks</td>
</tr>
</tbody>
</table>

1 Type of lessons
- Lectures
- Practical/Lab
- Seminar

2 Contact times
- Contact times
 - a) 20 h
 - b) 100 h
 - c) 10 h

3 Self-study times
- Self-study times
 - a) 40 h
 - b) 160 h
 - c) 30 h

4 Intended group size*
- a) max.16
- b) max. 2
- c) max. 16

2 Aims of the module and acquired skills

Students who successfully completed this module ...

- have acquired a solid understanding of important cellular electrophysiological methods.
- are able to apply intracellular recording and imaging techniques used in neurobiology (see contents of the module) and are able to independently design and perform small scientific projects related to topics of the module.
- have acquired basic programming skills with the high-level programming language Matlab.
- are able to analyze electrophysiological data using Matlab and the Spike 2 software package.
- have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level.
- are able to transfer skills acquired in this module to other fields of biology.

3 Contents of the module

- Basic properties of excitable membranes
- Functional analysis of membrane properties and neuronal activity
- Intracellular recordings of neuronal activity
- Analysis of synaptic interaction of neurons
- Pharmacological analysis of membrane properties
- Intracellular staining techniques and fluorescence microscopy
- Analysis of electrophysiological data with Matlab

4 Teaching/Learning methods

- Lectures; Practical/Lab (Project work); Seminar; Computer exercise with Matlab; Guidance to independent research; Training on presentation techniques in oral and written form

5 Requirements for participation

Enrollment in the Master’s degree course “Biological Sciences” or in the Master’s degree course “Klinische und Experimentelle Neurowissenschaften”

Additionally recommended:
Participation in an advanced neurobiology/animal physiology course within a bachelor’s program (e.g. MN-B-WP I [Neuro 1] at University of Cologne) is highly desirable. The knowledge of basic neurobiology on the level of a general biology text book (Campbell or Purves) is a prerequisite.

6 Type of module examinations

The final examination consists of three parts: Two hours written examination about topics of the lectures, the practical/lab part and the seminars (70 % of the total module mark) and the oral presentation (30% of the total module mark)

7 Requisites for the allocation of credits

Regular and active participation; Passed seminar paper
Each examination part at least “sufficient” (see appendix of the examination regulations for details)

8 Compatibility with other Curricula*

Elective module in the Master’s degree course “Klinische und Experimentelle Neurowissenschaften”
| 9 | **Significance of the module mark for the overall grade**
In the Master’s degree course “Experimental and Clinical Neuroscience”: 12 % of the overall grade (see also appendix of the examination regulations) |
|---|---|
| 10 | **Module coordinator**: PD Dr. Joachim Schmidt, phone 470-6135, joachim.schmidt@uni-koeln.de
Participating faculty: Dr. T. Bockemühl, Dr. M. Gruhn, Dr. S. Hess, Prof. Dr. P. Kloppenburg, Prof. Dr. M. Nawrot, PD Dr. J. Schmidt |
| 11 | **Additional information**
Subject module of the Master’s degree course “Biological Sciences”
Focus of research: (N) Neurobiology
Literature:
- Byrne, J.H. et al. (2014) From Molecules to Networks: An Introduction to Cellular and Molecular Neuroscience. 3rd edition (or older editions), Academic Press
General time schedule: Week 1-6 (Mon.-Fri.): Lectures, practical/lab and preparation for the seminar talk (held at the end of week 6) as well as writing seminar paper; Week 7 (Mon.-Fri): Preparation for the written examination
Note: The module contains hand-on laboratory work conducted individually and is taught in course rooms. The module does not contain computer-based practicals/research as a main component.
Introduction to the module: April 09, 2018 at 9:00 a.m., Cologne Biocenter, room 1.007 (first floor); for preparation to the module before this introduction see advice(s) under literature
Written examination: May 28, 2018; more details will be given at the beginning of the module |